Changing Abundance, Composition and Distribution of Species

Kibret S, Lautze J, McCartney M, Nhamo L, Wilson GG. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate. Malaria Journal [Internet]. 2016. Publisher's VersionAbstract


Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change.


The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs.


The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21–23 million in the 2020s, 25–26 million in the 2050s and 28–29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2–1.6 million in the 2020s, 2.1–3.0 million in the 2050s and 2.4–3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6.


In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected. Modifying conventional water management frameworks to improve malaria control, holds the potential to mitigate some of this increase and should be more actively implemented.


Kibret S, Wilson GG, Ryder D, Tekie H, Petros B. The Influence of Dams on Malaria Transmission in Sub-Saharan Africa. EcoHealth [Internet]. 2015;14 (2) :408-419. Publisher's VersionAbstract

The construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa. Common themes emerging from the literature were that dams intensified malaria transmission in semi-arid and highland areas with unstable malaria transmission but had little or no impact in areas with perennial transmission. Differences in the impacts of dams resulted from the types and characteristics of malaria vectors and their breeding habitats in different settings of sub-Saharan Africa. A higher abundance of a less anthropophilic Anopheles arabiensis than a highly efficient vector A. gambiae explains why dams did not increase malaria in stable areas. In unstable areas where transmission is limited by availability of water bodies for vector breeding, dams generally increase malaria by providing breeding habitats for prominent malaria vector species. Integrated vector control measures that include reservoir management, coupled with conventional malaria control strategies, could optimize a reduction of the risk of malaria transmission around dams in the region.

Giannini TC, Tambosi LR, Acosta AL, Jaffé R, Saraiva AM, Imperatriz-Fonseca VL, Metzger JP. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change. PLoS ONE [Internet]. 2015. Publisher's VersionAbstract
Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee’s flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change.
Nichols E, Gomez A. Dung beetles and fecal helminth transmission: patterns, mechanisms and questions. Parasitology [Internet]. 2013;141 (5) :614-623. Publisher's VersionAbstract
Dung beetles are detrivorous insects that feed on and reproduce in the fecal material of vertebrates. This dependency on vertebrate feces implies frequent contact between dung beetles and parasitic helminths with a fecal component to their life-cycle. Interactions between dung beetles and helminths carry both positive and negative consequences for successful parasite transmission, however to date there has been no systematic review of dung beetle-helminth interactions, their epidemiological importance, or their underlying mechanisms. Here we review the observational evidence of beetle biodiversity–helminth transmission relationships, propose five mechanisms by which dung beetles influence helminth survival and transmission, and highlight areas for future research. Efforts to understand how anthropogenic impacts on biodiversity may influence parasite transmission must include the development of detailed, mechanistic understanding of the multiple interactions between free-living and parasitic species within ecological communities. The dung beetle– helminth system may be a promising future model system with which to understand these complex relationships.
Anenberg SC, Weinberger KR, Roman H, Neumann JE, Crimmins A, Fann N, Martinich J, Kinney PL. Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change . GeoHealth [Internet]. 2017. Publisher's VersionAbstract

Future climate change is expected to lengthen and intensify pollen seasons in the U.S., potentially increasing incidence of allergic asthma. We developed a proof-of-concept approach for estimating asthma emergency department (ED) visits in the U.S. associated with present-day and climate-induced changes in oak pollen. We estimated oak pollen season length for moderate (Representative Concentration Pathway (RCP) 4.5) and severe climate change scenarios (RCP8.5) through 2090 using five climate models and published relationships between temperature, precipitation, and oak pollen season length. We calculated asthma ED visit counts associated with 1994–2010 average oak pollen concentrations and simulated future oak pollen season length changes using the Environmental Benefits Mapping and Analysis Program, driven by epidemiologically derived concentration-response relationships. Oak pollen was associated with 21,200 (95% confidence interval, 10,000–35,200) asthma ED visits in the Northeast, Southeast, and Midwest U.S. in 2010, with damages valued at $10.4 million. Nearly 70% of these occurred among children age <18 years. Severe climate change could increase oak pollen season length and associated asthma ED visits by 5% and 10% on average in 2050 and 2090, with a marginal net present value through 2090 of $10.4 million (additional to the baseline value of $346.2 million). Moderate versus severe climate change could avoid >50% of the additional oak pollen-related asthma ED visits in 2090. Despite several key uncertainties and limitations, these results suggest that aeroallergens pose a substantial U.S. public health burden, that climate change could increase U.S. allergic disease incidence, and that mitigating climate change may have benefits from avoided pollen-related health impacts.

Galvani AP, Bauch CT, Anand M, Singer BH, Levin SA. Human–environment interactions in population and ecosystem health. PNAS [Internet]. 2016;113 (51) :14502–14506. Publisher's VersionAbstract

As the global human population continues to grow, so too does our impact on the environment. The ingenuity with which our species has harnessed natural resources to fulfill our needs is dazzling. Even as we tighten our grip on the environment, however, the escalating extent of anthropogenic actions destabilizes long-standing ecological balances (12). The dangers of mining, refining, and fossil fuel consumption now extend beyond occupational or proximate risks to global climate change (3). Among a plethora of environmental problems, extreme climate events are intensifying (45). Storms, droughts, and floods cause direct destruction, but also have pervasive repercussions on food security, infectious disease transmission, and economic stability that take their toll for many years. For example, within weeks of the catastrophic wind and flood damage from the 2016 Hurricane Matthew in Haiti, there was a dramatic surge in cholera, among other devastating repercussions (67). In a world where 1% of the population possesses 50% of the wealth (8), those worst affected by extreme climatic events and the aftermath are also the least able to rebound.