Pollution

Schmidt C, Krauth T, Wagner S. Export of Plastic Debris by Rivers into the Sea . Environmental Science and Technology [Internet]. 2017. Publisher's VersionAbstract

A substantial fraction of marine plastic debris originates from land-based sources and rivers potentially act as a major transport pathway for all sizes of plastic debris. We analyzed a global compilation of data on plastic debris in the water column across a wide range of river sizes. Plastic debris loads, both microplastic (particles <5 mm) and macroplastic (particles >5 mm) are positively related to the mismanaged plastic waste (MMPW) generated in the river catchments. This relationship is nonlinear where large rivers with  population-rich catchments delivering a disproportionately higher fraction of MMPW into the sea. The 10 top-ranked rivers transport 88–95% of the global load into the sea. Using MMPW as a predictor we calculate the global plastic debris inputs form rivers into the sea to range between 0.41 and 4 × 106 t/y. Due to the limited amount of data high uncertainties were expected and ultimately confirmed. The empirical analysis to quantify plastic loads in rivers can be extended easily by additional potential predictors other than MMPW, for example, hydrological conditions.

  •  
Lamb JB, Willis BL, Fiorenza EA, Couch CS, Howard R, Rader DN, True JD, Kelly LA, Ahmad A, Jompa J, et al. Plastic waste associated with disease on coral reefs . Science [Internet]. 2018;359 (6374) :460-462. Publisher's VersionAbstract

Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods.

Filippelli GM, Taylor MP. Addressing Pollution-Related Global Environmental Health Burdens . GeoHealth [Internet]. 2018. Publisher's VersionAbstract

New analyses are revealing the scale of pollution on global health, with a disproportionate share of the impact borne by lower-income nations, minority and marginalized individuals. Common themes emerge on the drivers of this pollution impact, including a lack of regulation and its enforcement, research and expertise development, and innovative funding mechanisms for mitigation. Creative approaches need to be developed and applied to address and overcome these obstacles. The existing “business as usual” modus operandi continues to externalize human health costs related to pollution, which exerts a negative influence on global environmental health.

 
Efferth T, Paul NW. Threats to human health by great ocean garbage patches . The Lancet Planetary Health [Internet]. 2017;1 (8). Publisher's VersionAbstract
The medical relevance of environmental topics can be blurred by politicised debates and the global scale of the environmental impact of human life. However, a seemingly remote serious health threat is currently floating in our oceans and needs to trigger the attention of the medical community, as its clinical manifestation is only a matter of time.
 
 
Myers SS. Planetary health: protecting human health on a rapidly changing planet . The Lancet [Internet]. 2017. Publisher's VersionAbstract

The impact of human activities on our planet's natural systems has been intensifying rapidly in the past several decades, leading to disruption and transformation of most natural systems. These disruptions in the atmosphere, oceans, and across the terrestrial land surface are not only driving species to extinction, they pose serious threats to human health and wellbeing. Characterising and addressing these threats requires a paradigm shift. In a lecture delivered to the Academy of Medical Sciences on Nov 13, 2017, I describe the scale of human impacts on natural systems and the extensive associated health effects across nearly every dimension of human health. I highlight several overarching themes that emerge from planetary health and suggest advances in the way we train, reward, promote, and fund the generation of health scientists who will be tasked with breaking out of their disciplinary silos to address this urgent constellation of health threats. I propose that protecting the health of future generations requires taking better care of Earth's natural systems.

Watts N, Amann M, Ayeb-Karlsson S, Belesova K, Bouley T. The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health . The Lancet [Internet]. 2017. Publisher's VersionAbstract
The Lancet Countdown tracks progress on health and climate change and provides an independent assessment of the health effects of climate change, the implementation of the Paris Agreement,1 and the health implications of these actions. It follows on from the work of the 2015 Lancet Commission on Health and Climate Change,2 which concluded that anthropogenic climate change threatens to undermine the past 50 years of gains in public health, and conversely, that a comprehensive response to climate change could be “the greatest global health opportunity of the 21st century”.
 
  •  
  • 1 of 14
  • »