Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R. The Lancet Commission on pollution and health . The Lancet [Internet]. 2017. Publisher's VersionAbstract
Pollution is the largest environmental cause of disease and premature death in the world today. Diseases caused by pollution were responsible for an estimated 9 million premature deaths in 2015—16% of all deaths worldwide—three times more deaths than from AIDS, tuberculosis, and malaria combined and 15 times more than from all wars and other forms of violence. In the most severely affected countries, pollution-related disease is responsible for more than one death in four.
Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, Schlesinger WH, Shoch D, Siikamäki JV, Smith P, et al. Natural climate solutions . Proceedings of the National Academy of Sciences [Internet]. 2017. Publisher's VersionAbstract

Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y−1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y−1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e−1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2−1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

Kurth AE. Planetary Health and the Role of Nursing: A Call to Action . Journal of Nursing Scholarship. 2017.Abstract
To discuss the drivers of planetary health, responses, and the role of nursing in making health systems more resilient in an era of increasing stresses. As health providers, scientists, educators, and leaders, nurses have an obligation to prepare for climate change and other impacts of ecosystem strain on human health.
Design and Methods
Review of literature relevant to a planetary health framework.
Population displacement, new disease patterns and health needs, stresses on air quality, food production and water systems, and equity concerns, as well as the generation of sustainable energy, are all intimately related to health.
Nurses are key to achieving the sustainable development goals that, like the planetary health framework, focus on environmental sustainability and human well-being. Nurses contribute to resilient health systems, as trusted leaders and providers of health care, and as advocates and change makers impacting the world.
Clinical Relevance
It is critical that nurses and other health professionals consider the multiple effects of ecosystem strain on human health, and anticipate population health and health system planning and response.
Mitchell EAD, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A. A worldwide survey of neonicotinoids in honey . Science [Internet]. 2017;358 (6359) :109-111. Publisher's VersionAbstract
Growing evidence for global pollinator decline is causing concern for biodiversity conservation and ecosystem services maintenance. Neonicotinoid pesticides have been identified or suspected as a key factor responsible for this decline. We assessed the global exposure of pollinators to neonicotinoids by analyzing 198 honey samples from across the world. We found at least one of five tested compounds (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) in 75% of all samples, 45% of samples contained two or more of these compounds, and 10% contained four or five. Our results confirm the exposure of bees to neonicotinoids in their food throughout the world. The coexistence of neonicotinoids and other pesticides may increase harm to pollinators. However, the concentrations detected are below the maximum residue level authorized for human consumption (average ± standard error for positive samples: 1.8 ± 0.56 nanograms per gram).
Rohde RA, Muller RA. Air Pollution in China: Mapping of Concentrations and Sources . PLoS ONE [Internet]. 2015. Publisher's VersionAbstract

China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China.

Ebenstein A, Fan M, Greenstone M, He G, Zhou M. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proceedings of the National Academy of Sciences [Internet]. 2017. Publisher's VersionAbstract

This paper finds that a 10-μg/m3 increase in airborne particulate matter [particulate matter smaller than 10 μm (PM10)] reduces life expectancy by 0.64 years (95% confidence interval = 0.21–1.07). This estimate is derived from quasiexperimental variation in PM10 generated by China’s Huai River Policy, which provides free or heavily subsidized coal for indoor heating during the winter to cities north of the Huai River but not to those to the south. The findings are derived from a regression discontinuity design based on distance from the Huai River, and they are robust to using parametric and nonparametric estimation methods, different kernel types and bandwidth sizes, and adjustment for a rich set of demographic and behavioral covariates. Furthermore, the shorter lifespans are almost entirely caused by elevated rates of cardiorespiratory mortality, suggesting that PM10 is the causal factor. The estimates imply that bringing all of China into compliance with its Class I standards for PM10 would save 3.7 billion life-years.