Urbanization

Oanh NTK, Leelasakultum K. Mapping exposure to particulate pollution during severe haze episode using improved MODIS AOT-PM10 regression model with synoptic meteorology classification. GeoHealth [Internet]. 2017. Publisher's VersionAbstract
Severe smoke haze from biomass burning is frequently observed in Northern Thailand during dry months of February–April. Sparsely located monitoring stations operated in this vast mountainous region could not provide sufficient particulate matter (PM) data for exposure risk assessment. Satellite aerosol optical thickness (AOT) data could be used, but their reliable relationship with ground-based PM data should be first established. This study aimed to improve the regression model between PM10 and Moderate Resolution Imaging Spectroradiometer AOT with consideration of synoptic patterns to better assess the exposure risk in the area. Among four synoptic patterns, each representing the totality of meteorology governing Northern Thailand on a given day, most severe haze days belonged to pattern 2 that featured conditions of clear sky, stagnant air, and high PM10 levels. AOT-24 h PM10 regression model for pattern 2 had coefficient of determination improved to 0.51 from 0.39 of combined case. Daily exposure maps to PM10 in most severe haze period of February–April 2007 were produced for Chiangmai, the largest and most populated province in Northern Thailand. Regression model for pattern 2 was used to convert 24 h PM10 ranges of modified risk scale to corresponding AOT ranges, and the mapping was done using spatially continuous AOT values. The highest exposure risk to PM10 was shown in urban populated areas. Larger numbers of forest fire hot spots and more calm winds were observed on the days of higher exposure risk. Early warning and adequate health care plan are necessary to reduce exposure risk to future haze episodes in the area.
van Praag CDG, Garfinkel SN, Sparasci O, Mees A, Philippides AO, Ware M, Ottaviani C, Critchley HD. Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds. Scientific Reports [Internet]. 2017. Publisher's VersionAbstract
Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds.
Almada AA, Golden CD, Osofsky SA, Myers SS. A case for Planetary Health/Geohealth. GeoHealth [Internet]. 2017;1 (2) :75-78. Publisher's VersionAbstract

Concern has been spreading across scientific disciplines that the pervasive human transformation of Earth's natural systems is an urgent threat to human health. The simultaneous emergence of “GeoHealth” and “Planetary Health” signals recognition that developing a new relationship between humanity and our natural systems is becoming an urgent global health priority—if we are to prevent a backsliding from the past century's great public health gains. Achieving meaningful progress will require collaboration across a broad swath of scientific disciplines as well as with policy makers, natural resource managers, members of faith communities, and movement builders around the world in order to build a rigorous evidence base of scientific understanding as the foundation for more robust policy and resource management decisions that incorporate both environmental and human health outcomes.

  •  
  • 1 of 7
  • »