Changing Biogeochemical Flows

Coral Reef BleachingBiogeochemical cycles are the pathways by which elements like carbon, phosphorus, nitrogen and sulfur, or compounds like water, flow between living organisms and the environment. Human activities can alter these cycles be producing or consuming in different quantities. For example, agricultural fertilizer and soil erosion have substantially increased levels of biologically available nitrogen and phosphorous in natural systems. Human production of biologically available nitrogen, primarily driven by the synthetic production of nitrogen fertilizer, is now greater than all forms of natural production combined. Flow of phosphorous into the oceans, primarily driven by the use of fertilizer from mines and livestock manure, is roughly three times the preindustrial level. Excess nitrogen decreases plant diversity in terrestrial ecosystems, and the combination of excess nitrogen and phosphorous in water bodies leads to algal blooms and eutrophication.

Learning Objectives

  • L1: Summarize each of the major biogeochemical cycles.
  • L2: Identify areas for intervention in each of the biogeochemical cycles whereby human intervention could mitigate downstream impacts.
  • L3: Relate specific changes in each biogeochemical cycle with the corresponding human health impacts.

Resources

Fabry VJ, Seibel BA, Feely RA, Orr JC. Impacts on ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science [Internet]. 2008;65 (3) :414-432. Publisher's VersionAbstract

Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the seawater chemistry of the world’s oceans with consequences for marine biota. Elevated partial pressure of CO2 (pCO2) is causing the calcium carbonate saturation horizon to shoal in many regions, particularly in high latitudes and regions that intersect with pronounced hypoxic zones. The ability of marine animals, most importantly pteropod molluscs, foraminifera, and some benthic invertebrates, to produce calcareous skeletal structures is directly affected by seawater CO2 chemistry. CO2influences the physiology of marine organisms as well through acid-base imbalance and reduced oxygen transport capacity. The few studies at relevant pCO2 levels impede our ability to predict future impacts on foodweb dynamics and other ecosystem processes. Here we present new observations, review available data, and identify priorities for future research, based on regions, ecosystems, taxa, and physiological processes believed to be most vulnerable to ocean acidification. We conclude that ocean acidification and the synergistic impacts of other anthropogenic stressors provide great potential for widespread changes to marine ecosystems.

Loladze I. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?. Trends in Ecology & Evolution [Internet]. 2002;17 :457-461. Publisher's VersionAbstract

Terrestrial vascular plants obtain their major constituent – carbon (C) – from atmospheric carbon dioxide (CO2), but draw all other chemical elements largely from the soil. Concentrations of these elements, however, do not change in unison with steadily increasing concentrations of CO2 [CO2]. Thus, relative to pre-industrial times, modern plants are experiencing a global elemental imbalance. Could this imbalance affect the elemental composition of plants, the most important food source on Earth? Apart from an overall decline in nitrogen concentration, very little is known about the effects of high [CO2] on other chemical elements, such as iron, iodine and zinc, which are already deficient in the diets of the half of human population. Here, I apply stoichiometric theory to argue that high [CO2], as a rule, should alter the elemental composition of plants, thus affecting the quality of human nutrition. The first compilation, to my knowledge, of published data supports the claim and shows an overall decline of the (essential elements):C ratio. Therefore, high [CO2] could intensify the already acute problem of micronutrient malnutrition.

Gifford RM, Barrett DJ, Lutze JL. The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues. Plant and Soil [Internet]. 2000;224 :1-14. Publisher's VersionAbstract

The influence of elevated CO2 concentration ([CO2]) during plant growth on the carbon:nutrient ratios of tissues depends in part on the time and space scales considered. Most evidence relates to individual plants examined over weeks to just a few years. The C:N ratio of live tissues is found to increase, decrease or remain the same under elevated [CO2]. On average it increases by about 15% under a doubled [CO2]. A testable hypothesis is proposed to explain why it increases in some situations and decreases in others. It includes the notion that only in the intermediate range of N-availability will C:N of live tissues increase under elevated [CO2]. Five hypotheses to explain the mechanism of such increase in C:N are discussed; none of these options explains all the published results. Where elevated [CO2] did increase the C:N of green leaves, that response was not necessarily expressed as a higher C:N of senesced leaves. An hypothesis is explored to explain the observed range in the degree of propogation of a CO2 effect on live tissues through to the litter derived from them. Data on C:P ratios under elevated [CO2] are sparse and also variable. They do not yet suggest a generalising-hypothesis of responses. Although, unlike for C:N, there is no theoretical expectation that C:P of plants would increase under elevated [CO2], the average trend in the data is of such an increase. The processes determining the C:P response to elevated [CO2] seem to be largely independent of those for C:N. Research to advance the topic should be structured to examine the components of the hypotheses to explain effects on C:N. This involves experiments in which plants are grown over the full range of N and of P availability from extreme limitation to beyond saturation. Measurements need to: distinguish structural from non-structural dry matter; organic from inorganic forms of the nutrient in the tissues; involve all parts of the plant to evaluate nutrient and C allocation changes with treatments; determine resorption factors during tissue senescence; and be made with cognisance of the temporal and spatial aspects of the phenomena involved.

  •  
  • 1 of 7
  • »