Changing Food Systems

Fishery CatchGlobal environmental change – particularly climate change, pollinator declines, fishery and wildlife declines, water shortages, and other forms of environmental processes – will pervasively affect our food systems and the ability to provide a growing human population with enough quality nutrition. Research is needed to understand how multiple interacting types of environmental change impact the quantity and quality of food available to different populations around the world. Another important priority is to understand how accelerating changes and losses to many wild and indigenous foods are likely to alter nutritional intake for different populations and affect their health.

Learning Objectives

  • L1: Identify the direct and indirect drivers of changes in food systems.
  • L2: Evaluate systems of food production in the context of accelerating environmental change.
  • L3: Identify factors in the food system that influence upstream and downstream outcomes in food production, distribution, consumption, and human health.
  • L4: Consider the impacts of changes in food systems on human health and how this may change over time.

 

Resources

Halpern BS, Frazier M, Afflerbach J, O’Hara C, Katona S, Lowndes JSS, Jiang N, Pacheco E, Scarborough C, Polsenberg J. Drivers and implications of change in global ocean health over the past five years . PLoS ONE [Internet]. 2017. Publisher's VersionAbstract

Growing international and national focus on quantitatively measuring and improving ocean health has increased the need for comprehensive, scientific, and repeated indicators to track progress towards achieving policy and societal goals. The Ocean Health Index (OHI) is one of the few indicators available for this purpose. Here we present results from five years of annual global assessment for 220 countries and territories, evaluating potential drivers and consequences of changes and presenting lessons learned about the challenges of using composite indicators to measure sustainability goals. Globally scores have shown little change, as would be expected. However, individual countries have seen notable increases or declines due in particular to improvements in the harvest and management of wild-caught fisheries, the creation of marine protected areas (MPAs), and decreases in natural product harvest. Rapid loss of sea ice and the consequent reduction of coastal protection from that sea ice was also responsible for declines in overall ocean health in many Arctic and sub-Arctic countries. The OHI performed reasonably well at predicting near-term future scores for many of the ten goals measured, but data gaps and limitations hindered these predictions for many other goals. Ultimately, all indicators face the substantial challenge of informing policy for progress toward broad goals and objectives with insufficient monitoring and assessment data. If countries and the global community hope to achieve and maintain healthy oceans, we will need to dedicate significant resources to measuring what we are trying to manage.

Kibret S, Lautze J, McCartney M, Nhamo L, Wilson GG. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate. Malaria Journal [Internet]. 2016. Publisher's VersionAbstract

Background

Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change.

Methods

The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs.

Results

The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21–23 million in the 2020s, 25–26 million in the 2050s and 28–29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2–1.6 million in the 2020s, 2.1–3.0 million in the 2050s and 2.4–3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6.

Conclusion

In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected. Modifying conventional water management frameworks to improve malaria control, holds the potential to mitigate some of this increase and should be more actively implemented.

 

Galvani AP, Bauch CT, Anand M, Singer BH, Levin SA. Human–environment interactions in population and ecosystem health. PNAS [Internet]. 2016;113 (51) :14502–14506. Publisher's VersionAbstract

As the global human population continues to grow, so too does our impact on the environment. The ingenuity with which our species has harnessed natural resources to fulfill our needs is dazzling. Even as we tighten our grip on the environment, however, the escalating extent of anthropogenic actions destabilizes long-standing ecological balances (12). The dangers of mining, refining, and fossil fuel consumption now extend beyond occupational or proximate risks to global climate change (3). Among a plethora of environmental problems, extreme climate events are intensifying (45). Storms, droughts, and floods cause direct destruction, but also have pervasive repercussions on food security, infectious disease transmission, and economic stability that take their toll for many years. For example, within weeks of the catastrophic wind and flood damage from the 2016 Hurricane Matthew in Haiti, there was a dramatic surge in cholera, among other devastating repercussions (67). In a world where 1% of the population possesses 50% of the wealth (8), those worst affected by extreme climatic events and the aftermath are also the least able to rebound.

Esham M, Jacobs B, Rosairo HSR, Siddighi BB. Climate change and food security: A Sri Lankan perspective . Environment, Development and Sustainability [Internet]. 2017. Publisher's VersionAbstract

There is growing concern in Sri Lanka over the impact of climate change, variability and extreme weather events on food production, food security and livelihoods. The link between climate change and food security has been mostly explored in relation to impacts on crop production or food availability aspects of food security, with little focus on other key dimensions, namely food access and food utilization. This review, based on available literature, adopted a food system approach to gain a wider perspective on food security issues in Sri Lanka. It points to several climate-induced issues posing challenges for food security. These issues include declining agriculture productivity, food loss along supply chains, low livelihood resilience of the rural poor and prevalence of high levels of undernourishment and child malnutrition. Our review suggests that achieving food security necessitates action beyond building climate resilient food production systems to a holistic approach that is able to ensure climate resilience of the entire food system while addressing nutritional concerns arising from impacts of climate change. Therefore, there is a pressing need to work towards a climate-smart agriculture system that will address all dimensions of food security. With the exception of productivity of a few crop species, our review demonstrates the dearth of research into climate change impacts on Sri Lanka’s food system. Further research is required to understand how changes in climate may affect other components of the food system including productivity of a wider range of food crops, livestock and fisheries, and shed light on the causal pathways of climate-induced nutritional insecurity.

Hunter DJ, Frumkin H, Jha A. Preventive Medicine for the Planet and Its Peoples. The New England Journal of Medicine [Internet]. 2017. Publisher's VersionAbstract

“Health is the human face of climate change” was the motivating idea behind the Climate and Health conference held at the Carter Center in Atlanta on Thursday, February 16, 2017. Originally scheduled by the Centers for Disease Control and Prevention (CDC), which then postponed it indefinitely, the meeting was resurrected by a coalition of nongovernmental organizations and universities and convened by former Vice President Al Gore. More than 300 attendees and a worldwide audience watching the live stream listened to more than 25 speakers addressing the health effects of climate change, the role of health professionals in adapting to these effects and communicating with the public and policymakers, and the health benefits of climate-change mitigation.

Salvati L, Tombolini I, Gemmiti R, Carlucci M, Bajocco S, Perini L, Ferrara A, Colantoni A. Complexity in action: Untangling latent relationships between land quality, economic structures and socio-spatial patterns in Italy. PLoS ONE. 2017.Abstract

Land quality, a key economic capital supporting local development, is affected by biophysical and anthropogenic factors. Taken as a relevant attribute of economic systems, land quality has shaped the territorial organization of any given region influencing localization of agriculture, industry and settlements. In regions with long-established human-landscape interactions, such as the Mediterranean basin, land quality has determined social disparities and polarization in the use of land, reflecting the action of geographical gradients based on elevation and population density. The present study investigates latent relationships within a large set of indicators profiling local communities and land quality on a fine-grained resolution scale in Italy with the aim to assess the potential impact of land quality on the regional socioeconomic structure. The importance of land quality gradients in the socioeconomic configuration of urban and rural regions was verified analyzing the distribution of 149 socioeconomic and environmental indicators organized in 5 themes and 17 research dimensions. Agriculture, income, education and labour market variables discriminate areas with high land quality from areas with low land quality. While differential land quality in peri-urban areas may reflect conflicts between competing actors, moderate (or low) quality of land in rural districts is associated with depopulation, land abandonment, subsidence agriculture, unemployment and low educational levels. We conclude that the socioeconomic profile of local communities has been influenced by land quality in a different way along urban-rural gradients. Policies integrating environmental and socioeconomic measures are required to consider land quality as a pivotal target for sustainable development. Regional planning will benefit from an in-depth understanding of place-specific relationships between local communities and the environment.

Licensing & Fair Use Agreement

All of the content in the collection is licensed for sharing and modification under a Creative Commons license (CC BY 4.0). If you are involved in education on planetary health topics and would like to share teaching materials, please enrich our community! By sharing materials you agree to the terms and conditions outlined in our legal framework. You can share materials here