Much of the global burden of disease is related to inadequate intake of calories, micronutrients, or certain food groups like fruits, vegetables, meats, nuts, and seeds. Additional burden of disease is associated with excessive intake of the wrong foods. Global food demand has never before increased more rapidly, and the biophysical conditions that underpin our global food production system have never been changing so rapidly. As a result, humanity is enormously vulnerable to health impacts from environmental change mediated through changing access to nutrition.

Learning Objectives

  • L1: Describe sociocultural, economic and environmental impacts on human nutrition.
  • L2: Explore the relationship between land use, agriculture and health.
  • L3: Examine human food production and consumption patterns in comparison with demographic shifts.


  • 1 of 2
  • »
Galvani AP, Bauch CT, Anand M, Singer BH, Levin SA. Human–environment interactions in population and ecosystem health. PNAS [Internet]. 2016;113 (51) :14502–14506. Publisher's VersionAbstract

As the global human population continues to grow, so too does our impact on the environment. The ingenuity with which our species has harnessed natural resources to fulfill our needs is dazzling. Even as we tighten our grip on the environment, however, the escalating extent of anthropogenic actions destabilizes long-standing ecological balances (12). The dangers of mining, refining, and fossil fuel consumption now extend beyond occupational or proximate risks to global climate change (3). Among a plethora of environmental problems, extreme climate events are intensifying (45). Storms, droughts, and floods cause direct destruction, but also have pervasive repercussions on food security, infectious disease transmission, and economic stability that take their toll for many years. For example, within weeks of the catastrophic wind and flood damage from the 2016 Hurricane Matthew in Haiti, there was a dramatic surge in cholera, among other devastating repercussions (67). In a world where 1% of the population possesses 50% of the wealth (8), those worst affected by extreme climatic events and the aftermath are also the least able to rebound.

Esham M, Jacobs B, Rosairo HSR, Siddighi BB. Climate change and food security: A Sri Lankan perspective . Environment, Development and Sustainability [Internet]. 2017. Publisher's VersionAbstract

There is growing concern in Sri Lanka over the impact of climate change, variability and extreme weather events on food production, food security and livelihoods. The link between climate change and food security has been mostly explored in relation to impacts on crop production or food availability aspects of food security, with little focus on other key dimensions, namely food access and food utilization. This review, based on available literature, adopted a food system approach to gain a wider perspective on food security issues in Sri Lanka. It points to several climate-induced issues posing challenges for food security. These issues include declining agriculture productivity, food loss along supply chains, low livelihood resilience of the rural poor and prevalence of high levels of undernourishment and child malnutrition. Our review suggests that achieving food security necessitates action beyond building climate resilient food production systems to a holistic approach that is able to ensure climate resilience of the entire food system while addressing nutritional concerns arising from impacts of climate change. Therefore, there is a pressing need to work towards a climate-smart agriculture system that will address all dimensions of food security. With the exception of productivity of a few crop species, our review demonstrates the dearth of research into climate change impacts on Sri Lanka’s food system. Further research is required to understand how changes in climate may affect other components of the food system including productivity of a wider range of food crops, livestock and fisheries, and shed light on the causal pathways of climate-induced nutritional insecurity.

DeFries R, Mondal P, Singh D, Agrawal I, Fanzo J, Remans R, Wood S. Synergies and trade-offs for sustainable agriculture: nutritional yields and climate-resilience for cereal crops in Central India. Global Food Security [Internet]. 2016;11 :44-53. Publisher's VersionAbstract

Sustainable agriculture has multiple objectives, including efficient use of land to produce nutrients for human consumption, climate resilience, and income for farmers. We illustrate an approach to examine trade-offs and synergies among these objectives for monsoon cereal crops in central India. We estimate nutritional yields for protein, energy and iron and examine the sensitivity of yields to monsoon rainfall and temperature. Rice, the dominant crop in the region, is the least land efficient for providing iron and most sensitive to rainfall variability. Sorghum and maize provide high nutritional yields while small millet is most resilient to climate variability. Price incentives are strong for rice. No single crop is superior for all objectives in this region. Instead, understanding which crops, or combinations of crops, are most suitable requires identifying household-, community-, and region-specific priorities coupled with empirical analysis that considers multiple objectives.

Almada AA, Golden CD, Osofsky SA, Myers SS. A case for Planetary Health/Geohealth. GeoHealth [Internet]. 2017;1 (2) :75-78. Publisher's VersionAbstract

Concern has been spreading across scientific disciplines that the pervasive human transformation of Earth's natural systems is an urgent threat to human health. The simultaneous emergence of “GeoHealth” and “Planetary Health” signals recognition that developing a new relationship between humanity and our natural systems is becoming an urgent global health priority—if we are to prevent a backsliding from the past century's great public health gains. Achieving meaningful progress will require collaboration across a broad swath of scientific disciplines as well as with policy makers, natural resource managers, members of faith communities, and movement builders around the world in order to build a rigorous evidence base of scientific understanding as the foundation for more robust policy and resource management decisions that incorporate both environmental and human health outcomes.

Crist E, Mora C, Engelman R. The interaction of human population, food production, and biodiversity protection. Science [Internet]. 2017;356 (6335) :260-264. Publisher's VersionAbstract

Research suggests that the scale of human population and the current pace of its growth contribute substantially to the loss of biological diversity. Although technological change and unequal consumption inextricably mingle with demographic impacts on the environment, the needs of all human beings—especially for food—imply that projected population growth will undermine protection of the natural world. Numerous solutions have been proposed to boost food production while protecting biodiversity, but alone these proposals are unlikely to staunch biodiversity loss. An important approach to sustaining biodiversity and human well-being is through actions that can slow and eventually reverse population growth: investing in universal access to reproductive health services and contraceptive technologies, advancing women’s education, and achieving gender equality.

  • 1 of 25
  • »

Licensing & Fair Use Agreement

All of the content in the collection is licensed for sharing and modification under a Creative Commons license (CC BY 4.0). If you are involved in education on planetary health topics and would like to share teaching materials, please enrich our community! By sharing materials you agree to the terms and conditions outlined in our legal framework. You can share materials here