Changing Land Use and Land Cover



Giannini TC, Tambosi LR, Acosta AL, Jaffé R, Saraiva AM, Imperatriz-Fonseca VL, Metzger JP. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change. PLoS ONE [Internet]. 2015. Publisher's VersionAbstract
Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee’s flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change.
Jaffe R, Castilla A, Pope N, Imperatriz-Fonseca VL, Metzger JP, Arias MC, Jha S. Landscape genetics of a tropical rescue pollinator. Conservation Genetics [Internet]. 2015;17 (2). Publisher's VersionAbstract
Pollination services are increasingly threatened by the loss and modification of natural habitats, posing a risk to the maintenance of both native plant biodiversity and agricultural production. In order to safeguard pollination services, it is essential to examine the impacts of habitat degradation on the population dynamics of key pollinators and identify potential ‘‘rescue pollinators’’ capable of persisting in these human-altered landscapes. Using a landscape genetic approach, we assessed the impact of landscape structure on genetic differentiation in the widely-distributed tropical stingless bee Trigona spinipes (Apidae: Meliponini) across agricultural landscape mosaics composed of coffee plantations and Atlantic forest fragments in southeastern Brazil. We genotyped 115 bees at 16 specific and highly polymorphic microsatellite loci, developed using next-generation sequencing. Our results reveal that T. spinipes is capable of dispersing across remarkably long distances, as we did not find genetic differentiation across a 200 km range, nor fine-scale spatial genetic structure. Furthermore, gene flow was not affected by forest cover, land cover, or elevation, indicating that reproductive individuals are able to disperse well through agricultural landscapes and across altitudinal gradients. We also found evidence of a recent population expansion, suggesting that this opportunistic stingless bee is capable of colonizing degraded habitats. Our results thus suggest that T. spinipes can persist in heavily-altered landscapes and can be regarded as a rescue pollinator, potentially compensating for the decline of other native pollinators in degraded tropical landscapes.
Scheffera M. Anticipating societal collapse; Hints from the Stone Age . PNAS [Internet]. 2016;113 (39) :10733–10735. Publisher's VersionAbstract

Few aspects of human history are as mindboggling as the sudden disintegration of advanced societies. It is tempting to seek common patterns or even draw some lessons for modern times from the many ancient cases of societal disintegration. In PNAS, Downey et al. (1) report that universal warning signals of reduced resilience systematically preceded the collapse of Stone Age societies. Might similar indicators of fragility be relevant in modern times? Of course, the nature of human societies has changed entirely. However, there are at times striking parallels between stories of collapse even if they happened in entirely different periods. Consider the abrupt abandonment of the iconic alcove sites in Mesa Verde by the ancestral Puebloan people: the greatest “vanishing act” in prehistoric America (2). Archaeological evidence now reveals that before Pueblo peoples massively migrated in the mid-to-late 1200s, there had actually been a slow build-up of tension (3, 4). Over a century of drought, violence, and political turmoil drove increasing numbers of people into the Mesa Verde region, which was relatively productive for farming, straining carrying capacity as well as cultural traditions and resulting in destabilizing conflicts. Portions of the northern Southwest began to empty out in the first decades of the 13th century and by the mid-1200s even the favored central Mesa Verde region was starting to lose population, well in advance of the “Great Drought” beginning in the late 1270s that seems to have given the final blow. Now, Syria is the scene of a sudden massive exodus, and some aspects of the complex situation do seem to echo the Pueblo story. The Fertile Crescent has likely been experiencing the worst drought in 900 y, making subsistence farming in the countryside extremely challenging and driving millions in Syria to the cities, where tensions increased …

Galvani AP, Bauch CT, Anand M, Singer BH, Levin SA. Human–environment interactions in population and ecosystem health. PNAS [Internet]. 2016;113 (51) :14502–14506. Publisher's VersionAbstract

As the global human population continues to grow, so too does our impact on the environment. The ingenuity with which our species has harnessed natural resources to fulfill our needs is dazzling. Even as we tighten our grip on the environment, however, the escalating extent of anthropogenic actions destabilizes long-standing ecological balances (12). The dangers of mining, refining, and fossil fuel consumption now extend beyond occupational or proximate risks to global climate change (3). Among a plethora of environmental problems, extreme climate events are intensifying (45). Storms, droughts, and floods cause direct destruction, but also have pervasive repercussions on food security, infectious disease transmission, and economic stability that take their toll for many years. For example, within weeks of the catastrophic wind and flood damage from the 2016 Hurricane Matthew in Haiti, there was a dramatic surge in cholera, among other devastating repercussions (67). In a world where 1% of the population possesses 50% of the wealth (8), those worst affected by extreme climatic events and the aftermath are also the least able to rebound.

Ingegnoli V, Giglio E. Complex environmental alterations damages human body defence system: a new bio-systemic way of investigation. WSEAS Transactions on Environment and Development [Internet]. 2017;13 :170-180. Publisher's VersionAbstract
Few studies focus on environment in its biological dimension, relating territorial/landscape alteration and human health, beyond pollution impact. The growing importance of risk factors in medicine and the new ecological advancements in Landscape Bionomics impose to deepen these studies. The landscape is a living entity, in which man and territory form a complex biological level of life organization. So, a landscape must be investigated in its physiology and behaviour by the discipline of Landscape Bionomics. This to check “if”, “how” and “how much” landscape alterations could reflect on human health, independently form pollution. First evidences of a clear correlation subsist, concerning an increase of mortality rate within Milan hinterland (Italy). The Landscape dysfunctions are correlated with the increase of mortality rate MR. All the environmental alterations are registered as ‘stressors’ by a basilar ethological alarm process. So, bionomic landscape dysfunctions may attempt our health bringing to an excess of cortisol, which reduces our hormonal, immune and nervous system defences. This enlarges the W.H.O. estimation of the environmental MR and the importance of applications impose a true effort in landscape rehabilitation.
Hunter DJ, Frumkin H, Jha A. Preventive Medicine for the Planet and Its Peoples. The New England Journal of Medicine [Internet]. 2017. Publisher's VersionAbstract

“Health is the human face of climate change” was the motivating idea behind the Climate and Health conference held at the Carter Center in Atlanta on Thursday, February 16, 2017. Originally scheduled by the Centers for Disease Control and Prevention (CDC), which then postponed it indefinitely, the meeting was resurrected by a coalition of nongovernmental organizations and universities and convened by former Vice President Al Gore. More than 300 attendees and a worldwide audience watching the live stream listened to more than 25 speakers addressing the health effects of climate change, the role of health professionals in adapting to these effects and communicating with the public and policymakers, and the health benefits of climate-change mitigation.