Climate Change

Glacial CalvingClimate change, caused by increasing atmospheric concentrations of greenhouse gases, is driven by human activity. Anthropogenic emissions of carbon dioxide, methane, nitrous oxide, and black carbon are primarily responsible for the changing climate. Burning fossil fuels and clearing natural habitats for human use produce the majority of these emissions. Climate change continues to cause glacial melting in Greenland and the Antarctic, rising sea levels, increases in global mean surface temperatures, increases in extreme weather events, and changes in the abundance, distribution, and composition of species. Climate change and the above ecosystem transformations are inextricably connected; as a result, these changes and impacts mutually exacerbate each other.

Learning Objectives

  • L1: Summarize climatic changes over time, highlighting specific eras in human history.
  • L2: Describe and discuss the anthropogenic drivers of climate change.
  • L3: Consider strategies for climatic adaptation and mitigation with a focus on human health.
  • L4: Critically evaluate the purpose and effectiveness of recent global climate change policies and events, considering the roles of key stakeholders.


  • 1 of 2
  • »
Komen K. Could malaria control programmes be timed to coincide with onset of rainfall?. EcoHealth [Internet]. 2017;14 (2) :259-271. Publisher's VersionAbstract

Malaria cases in South Africa’s Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (−0.02, −0.01, −0.02, −0.00) and temperature (−46.61, −47.46, −48.14, −36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a ‘malaria season’. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.

Geisler C, Currens B. Impediments to inland resettlement under conditions of accelerated sea level rise. Land Use Policy [Internet]. 2017;66 :322-330. Publisher's VersionAbstract

Global mean sea level rise (GMSLR) stemming from the multiple effects of human-induced climate change has potentially dramatic effects for inland land use planning and habitability. Recent research suggests that GMSLR may endanger the low-elevation coastal zone sooner than expected, reshaping coastal geography, reducing habitable landmass, and seeding significant coastal out-migrations. Our research reviews the barriers to entry in the noncoastal hinterland. Using three organizing clusters (depletion zones, win-lose zones, and no-trespass zones), we identify principal inland impediments to relocation and provide preliminary estimates of their toll on inland resettlement space. We make the case for proactive adaptation strategies extending landward from on global coastlines and illustrate this position with land use planning responses in Florida and China.

Kibret S, Lautze J, McCartney M, Nhamo L, Wilson GG. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate. Malaria Journal [Internet]. 2016. Publisher's VersionAbstract


Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change.


The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs.


The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21–23 million in the 2020s, 25–26 million in the 2050s and 28–29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2–1.6 million in the 2020s, 2.1–3.0 million in the 2050s and 2.4–3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6.


In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected. Modifying conventional water management frameworks to improve malaria control, holds the potential to mitigate some of this increase and should be more actively implemented.


Summers JK, Smith LM, Harwell LC, Buck KD. Conceptualizing holistic community resilience to climate events: Foundation for a climate resilience screening index . GeoHealth [Internet]. 2017. Publisher's VersionAbstract

The concept of resilience has been evolving over the past decade as a way to address the current and future challenges nations, states, and cities face from a changing climate. Understanding how the environment (natural and built), climate event risk, societal interactions, and governance reflect community resilience for adaptive management is critical for envisioning urban and natural environments that can persist through extreme weather events and longer-term shifts in climate. To be successful, this interaction of these five domains must result in maintaining quality of life and ensuring equal access to the benefits or the protection from harm for all segments of the population. An exhaustive literature review of climate resilience approaches was conducted examining the two primary elements of resilience—vulnerability and recoverability. The results of this review were examined to determine if any existing frameworks addressed the above five major areas in an integrated manner. While some aspects of a resilience model were available for existing sources, no comprehensive approach was available. A new conceptual model for resilience to climate events is proposed that incorporates some available structures and addresses these five domains at a national, regional, state, and county spatial scale for a variety of climate-induced events ranging from superstorms to droughts and their concomitant events such as wildfires, floods, and pest invasions. This conceptual model will be developed in a manner that will permit comparisons among governance units (e.g., counties) and permit an examination of best reliance practices.

Anenberg SC, Weinberger KR, Roman H, Neumann JE, Crimmins A, Fann N, Martinich J, Kinney PL. Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change . GeoHealth [Internet]. 2017. Publisher's VersionAbstract

Future climate change is expected to lengthen and intensify pollen seasons in the U.S., potentially increasing incidence of allergic asthma. We developed a proof-of-concept approach for estimating asthma emergency department (ED) visits in the U.S. associated with present-day and climate-induced changes in oak pollen. We estimated oak pollen season length for moderate (Representative Concentration Pathway (RCP) 4.5) and severe climate change scenarios (RCP8.5) through 2090 using five climate models and published relationships between temperature, precipitation, and oak pollen season length. We calculated asthma ED visit counts associated with 1994–2010 average oak pollen concentrations and simulated future oak pollen season length changes using the Environmental Benefits Mapping and Analysis Program, driven by epidemiologically derived concentration-response relationships. Oak pollen was associated with 21,200 (95% confidence interval, 10,000–35,200) asthma ED visits in the Northeast, Southeast, and Midwest U.S. in 2010, with damages valued at $10.4 million. Nearly 70% of these occurred among children age <18 years. Severe climate change could increase oak pollen season length and associated asthma ED visits by 5% and 10% on average in 2050 and 2090, with a marginal net present value through 2090 of $10.4 million (additional to the baseline value of $346.2 million). Moderate versus severe climate change could avoid >50% of the additional oak pollen-related asthma ED visits in 2090. Despite several key uncertainties and limitations, these results suggest that aeroallergens pose a substantial U.S. public health burden, that climate change could increase U.S. allergic disease incidence, and that mitigating climate change may have benefits from avoided pollen-related health impacts.

  • 1 of 41
  • »

Licensing & Fair Use Agreement

All of the content in the collection is licensed for sharing and modification under a Creative Commons license (CC BY 4.0). If you are involved in education on planetary health topics and would like to share teaching materials, please enrich our community! By sharing materials you agree to the terms and conditions outlined in our legal framework. You can share materials here