Rapid urbanization is the dominant demographic trend in the 21st century. Urban design must focus on optimizing natural resources and human health. When building and managing cities, it must be a priority to reduce the overall ecological footprints by reducing impacts on biodiversity; air and water pollution; and per capita energy, water, and arable land use. Designing highly efficient cities and simultaneously capitalizing on health co-benefits, such as cleaner air and using physical activity as transportation, could make an enormous positive impact on health. Further research is needed to develop principles of effective sustainable urban design that promote the physical and mental health of urban dwellers while reducing the global ecological footprint of the world's cities.

Seidahmed OME, Lu D, Chong CS, Ng LC, Eltahir EAB. Patterns of Urban Housing Shape Dengue Distribution in Singapore at Neighborhood and Country Scales . GeoHealth [Internet]. 2018. Publisher's VersionAbstract

Dengue is the most important human arboviral disease in Singapore. We classified residential areas into low-rise and high-rise housing and investigated the influence of urban drainage on the distribution of dengue incidence and outdoor breeding at neighborhood and country scales. In Geylang area (August 2014 to August 2015), dengue incidence was higher in a subarea of low-rise housing compared to high-rise one, averaging 26.7 (standard error, SE = 4.83) versus 2.43 (SE = 0.67) per 1,000 people. Outdoor breeding drains of Aedes aegypti have clustered in the low-rise housing subarea. The pupal density per population was higher in the low-rise blocks versus high-rise ones, 246 (SE = 69.08) and 35.4 (SE = 25.49) per 1,000 people, respectively. The density of urban drainage network in the low-rise blocks is double that in the high-rise ones, averaging 0.05 (SE = 0.0032) versus 0.025 (SE = 0.00245) per meter. Further, a holistic analysis at a country-scale has confirmed the role of urban hydrology in shaping dengue distribution in Singapore. Dengue incidence (2013–2015) is proportional to the fractions of the area (or population) of low-rise housing. The drainage density in low-rise housing is 4 times that corresponding estimate in high-rise areas, 2.59 and 0.68 per meter, respectively. Public housing in agglomerations of high-rise buildings could have a positive impact on dengue if this urban planning comes at the expense of low-rise housing. City planners in endemic regions should consider the density of drainage networks for both the prevention of flooding and the breeding of mosquitoes.

Missirian A, Schlenker W. Asylum applications respond to temperature fluctuations . Science [Internet]. 2017;358 (6370). Publisher's VersionAbstract

International negotiations on climate change, along with recent upsurges in migration across the Mediterranean Sea, have highlighted the need to better understand the possible effects of climate change on human migration—in particular, across national borders. Here we examine how, in the recent past (2000–2014), weather variations in 103 source countries translated into asylum applications to the European Union, which averaged 351,000 per year in our sample. We find that temperatures that deviated from the moderate optimum (~20°C) increased asylum applications in a nonlinear fashion, which implies an accelerated increase under continued future warming. Holding everything else constant, asylum applications by the end of the century are predicted to increase, on average, by 28% (98,000 additional asylum applications per year) under representative concentration pathway (RCP) scenario 4.5 and by 188% (660,000 additional applications per year) under RCP 8.5 for the 21 climate models in the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP).

Coker ME, Bond NR, Chee YE, Walsh CJ. Alternatives to biodiversity offsets for mitigating the effects of urbanization on stream ecosystems . Conservation Biology [Internet]. 2017. Publisher's VersionAbstract

Globally, offset schemes have emerged in many statutory frameworks relating to development activities, with the aim of balancing biodiversity conservation and development. While the theory and use of biodiversity offsets in terrestrial environments is broadly documented, little attention has been paid to offsets in stream ecosystems. Here we examine the application of offset schemes to stream ecosystems and explore whether they suffer similar shortcomings to those of offset schemes focused on terrestrial biodiversity. To challenge the applicability of offsets further, we discuss typical trajectories of urban expansion and their cascading physical, chemical and biological impacts on stream ecosystems. We argue that the highly connected nature of stream ecosystems and urban drainage networks can transfer impacts of urbanization across wide areas, complicating the notion of like-for-like exchange and the prospect of effectively mitigating biodiversity loss. Instead, we identify in-catchment options for stormwater control, which can avoid or minimize the impacts of development on downstream ecosystems, while presenting additional public and private benefits. We describe the underlying principles of these alternatives, some of the challenges associated with their uptake, and policy initiatives being trialled to facilitate adoption. In conclusion, we argue that stronger policies to avoid and minimize the impacts of urbanization provide better prospects for protecting downstream ecosystems, and can additionally, stimulate economic opportunities and improve urban liveability.

Lana RM, da Gomes MFC, de Lima TFM, Honório NA, Codeço CT. The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: A network-based analysis . PLoS Neglected Tropical Diseases [Internet]. 2017. Publisher's VersionAbstract

Human mobility, presence and passive transportation of Aedes aegypti mosquito, and environmental characteristics are a group of factors which contribute to the success of dengue spread and establishment. To understand this process, we assess data from dengue national and municipal basins regarding population and demographics, transportation network, human mobility, and Ae. aegypti monitoring for the Brazilian state of Acre since the first recorded dengue case in the year 2000 to the year 2015. During this period, several changes in Acre’s transport infrastructure and urbanization have been started. To reconstruct the process of dengue introduction in Acre, we propose an analytic framework based on concepts used in malaria literature, namely vulnerability and receptivity, to inform risk assessments in dengue-free regions as well as network theory concepts for disease invasion and propagation. We calculate the probability of dengue importation to Acre from other Brazilian states, the evolution of dengue spread between Acrean municipalities and dengue establishment in the state. Our findings suggest that the landscape changes associated with human mobility have created favorable conditions for the establishment of dengue virus transmission in Acre. The revitalization of its major roads, as well as the increased accessibility by air to and within the state, have increased dengue vulnerability. Unplanned urbanization and population growth, as observed in Acre during the period of study, contribute to ideal conditions for Ae. aegyptimosquito establishment, increase the difficulty in mosquito control and consequently its local receptivity.

Myers SS. Planetary health: protecting human health on a rapidly changing planet . The Lancet [Internet]. 2017. Publisher's VersionAbstract

The impact of human activities on our planet's natural systems has been intensifying rapidly in the past several decades, leading to disruption and transformation of most natural systems. These disruptions in the atmosphere, oceans, and across the terrestrial land surface are not only driving species to extinction, they pose serious threats to human health and wellbeing. Characterising and addressing these threats requires a paradigm shift. In a lecture delivered to the Academy of Medical Sciences on Nov 13, 2017, I describe the scale of human impacts on natural systems and the extensive associated health effects across nearly every dimension of human health. I highlight several overarching themes that emerge from planetary health and suggest advances in the way we train, reward, promote, and fund the generation of health scientists who will be tasked with breaking out of their disciplinary silos to address this urgent constellation of health threats. I propose that protecting the health of future generations requires taking better care of Earth's natural systems.

Watts N, Amann M, Ayeb-Karlsson S, Belesova K, Bouley T. The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health . The Lancet [Internet]. 2017. Publisher's VersionAbstract
The Lancet Countdown tracks progress on health and climate change and provides an independent assessment of the health effects of climate change, the implementation of the Paris Agreement,1 and the health implications of these actions. It follows on from the work of the 2015 Lancet Commission on Health and Climate Change,2 which concluded that anthropogenic climate change threatens to undermine the past 50 years of gains in public health, and conversely, that a comprehensive response to climate change could be “the greatest global health opportunity of the 21st century”.
  • 1 of 9
  • »